Installation Guide
This guide provides detailed instructions for installing the atlas-rag package and its dependencies.
Requirements
Python: 3.9 or higher
Operating Systems: Linux, macOS, Windows
Prerequisites
Before installing atlas-rag, you must install PyTorch and FAISS manually to ensure hardware compatibility.
1. Install PyTorch
Please visit the official PyTorch website to get the installation command appropriate for your system.
Example for Linux:
# For CPU-only systems
pip install torch torchvision torchaudio
# For systems with NVIDIA GPUs (adjust CUDA version as needed)
pip install torch==2.8.0 torchvision==0.23.0 torchaudio==2.8.0 --index-url https://download.pytorch.org/whl/cu126
2. Install FAISS
You need to install either the CPU or GPU version of FAISS: (Recommend to install faiss with CUDA-12.6)
# For CPU-only systems
pip install faiss-cpu
# For systems with NVIDIA GPUs (adjust CUDA version as needed)
conda install -c pytorch -c rapidsai -c rapidsai-nightly -c conda-forge -c nvidia pytorch/label/nightly::faiss-gpu-cuvs 'cuda-version=12.6'
Basic Installation
Install from PyPI
The simplest way to install atlas-rag is via pip:
pip install atlas-rag
This will install the core package with all required dependencies.
Optional Dependencies
NV-Embed-v2 Support
If you need support for NVIDIA’s NV-embed-v2 model, install the package with the nvembed extra:
pip install atlas-rag[nvembed]
This installs compatible versions of transformers (>=4.42.4, <=4.47.1) and sentence-transformers (2.7.0) required for NV-embed-v2.
Verification
After installation, verify that the package is installed correctly:
import atlas_rag
print(atlas_rag.__version__)
You can also verify the installation of key components:
from atlas_rag.kg_construction.triple_extraction import KnowledgeGraphExtractor
from atlas_rag.llm_generator import LLMGenerator
from atlas_rag.kg_construction.triple_config import ProcessingConfig
print("Installation successful!")
Development Installation
If you want to contribute to the project or install from source:
Clone the repository:
git clone https://github.com/HKUST-KnowComp/AutoSchemaKG.git
git checkout release/v0.0.5 # checkout to your desired branch
cd AutoSchemaKG
Install in development mode:
pip install -e .
Next Steps
After successful installation:
Check out the Quick Start Guide to begin using atlas-rag
Explore Examples for advance use cases
Support
If you encounter any installation issues:
Check the GitHub Issues
Contact the maintainers:
Dennis Hong Ting TSANG: httsangaj@connect.ust.hk
Jiaxin Bai: jbai@connect.ust.hk
Haoyu Huang: haoyuhuang@link.cuhk.edu.hk