# Installation Guide This guide provides detailed instructions for installing the `atlas-rag` package and its dependencies. ## Requirements - **Python**: 3.9 or higher - **Operating Systems**: Linux, macOS, Windows ## Prerequisites Before installing `atlas-rag`, you must install PyTorch and FAISS manually to ensure hardware compatibility. ### 1. Install PyTorch Please visit the [official PyTorch website](https://pytorch.org/get-started/locally/) to get the installation command appropriate for your system. Example for Linux: ```bash # For CPU-only systems pip install torch torchvision torchaudio # For systems with NVIDIA GPUs (adjust CUDA version as needed) pip install torch==2.8.0 torchvision==0.23.0 torchaudio==2.8.0 --index-url https://download.pytorch.org/whl/cu126 ``` ### 2. Install FAISS You need to install either the CPU or GPU version of [FAISS](https://github.com/facebookresearch/faiss/blob/main/INSTALL.md): (Recommend to install faiss with CUDA-12.6) ```bash # For CPU-only systems pip install faiss-cpu # For systems with NVIDIA GPUs (adjust CUDA version as needed) conda install -c pytorch -c rapidsai -c rapidsai-nightly -c conda-forge -c nvidia pytorch/label/nightly::faiss-gpu-cuvs 'cuda-version=12.6' ``` ## Basic Installation ### Install from PyPI The simplest way to install `atlas-rag` is via pip: ```bash pip install atlas-rag ``` This will install the core package with all required dependencies. ## Optional Dependencies ### NV-Embed-v2 Support If you need support for NVIDIA's NV-embed-v2 model, install the package with the `nvembed` extra: ```bash pip install atlas-rag[nvembed] ``` This installs compatible versions of `transformers` (>=4.42.4, <=4.47.1) and `sentence-transformers` (2.7.0) required for NV-embed-v2. ## Verification After installation, verify that the package is installed correctly: ```python import atlas_rag print(atlas_rag.__version__) ``` You can also verify the installation of key components: ```python from atlas_rag.kg_construction.triple_extraction import KnowledgeGraphExtractor from atlas_rag.llm_generator import LLMGenerator from atlas_rag.kg_construction.triple_config import ProcessingConfig print("Installation successful!") ``` ## Development Installation If you want to contribute to the project or install from source: 1. Clone the repository: ```bash git clone https://github.com/HKUST-KnowComp/AutoSchemaKG.git git checkout release/v0.0.5 # checkout to your desired branch cd AutoSchemaKG ``` 2. Install in development mode: ```bash pip install -e . ``` ## Next Steps After successful installation: 1. Check out the [Quick Start Guide](quickstart.md) to begin using atlas-rag 2. Explore [Examples](../example/advance_features.md) for advance use cases ## Support If you encounter any installation issues: - Check the [GitHub Issues](https://github.com/HKUST-KnowComp/AutoSchemaKG/issues) - Contact the maintainers: - Dennis Hong Ting TSANG: httsangaj@connect.ust.hk - Jiaxin Bai: jbai@connect.ust.hk - Haoyu Huang: haoyuhuang@link.cuhk.edu.hk