Configuration Guide

AutoSchemaKG uses several configuration classes to manage settings for different parts of the pipeline: knowledge graph construction, LLM generation, retrieval, and benchmarking.

Knowledge Graph Construction

The ProcessingConfig class controls the pipeline for extracting triples and generating concepts from text.

from atlas_rag.kg_construction.triple_config import ProcessingConfig

Parameters

Parameter

Type

Default

Description

model_path

str

Required

Path to the model or model identifier.

data_directory

str

Required

Directory containing input text files.

filename_pattern

str

Required

Pattern to filter input files (e.g., “musique”).

output_directory

str

"./generation_result_debug"

Directory to save output files.

batch_size_triple

int

16

Batch size for triple extraction.

batch_size_concept

int

64

Batch size for concept generation.

total_shards_triple

int

1

Total number of shards for parallel triple extraction.

current_shard_triple

int

0

Current shard index for triple extraction.

total_shards_concept

int

1

Total number of shards for parallel concept generation.

current_shard_concept

int

0

Current shard index for concept generation.

debug_mode

bool

False

Enable debug logging.

resume_from

int

0

Index to resume processing from.

record

bool

False

Whether to record processing metrics.

max_workers

int

8

Number of parallel workers. (Useful in speeding up when using OpenAI API)

remove_doc_spaces

bool

False

Whether to remove spaces from documents during preprocessing.

allow_empty

bool

True

Allow empty results without raising errors.

include_concept

bool

True

Whether to perform concept generation after triple extraction.

deduplicate_text

bool

False

Whether to deduplicate input text.

triple_extraction_prompt_path

str

None

Path to custom triple extraction prompt.

triple_extraction_schema_path

str

None

Path to custom triple extraction schema.

benchmark

bool

False

Enable benchmarking mode (e.g., for GPU hours).

LLM Generation

The GenerationConfig class provides a unified interface for configuring LLM generation parameters across different backends (OpenAI, vLLM, HuggingFace, etc.).

from atlas_rag.llm_generator import GenerationConfig

Core Parameters

Parameter

Type

Default

Description

max_tokens

int

8192

Maximum number of tokens to generate.

temperature

float

0.7

Sampling temperature.

top_p

float

None

Nucleus sampling probability.

top_k

int

None

Top-k sampling.

do_sample

bool

True

Whether to use sampling or greedy decoding.

seed

int

None

Random seed for reproducibility.

stop

str/List[str]

None

Stop sequences.

Repetition Control

Parameter

Type

Default

Description

frequency_penalty

float

None

Penalize new tokens based on their existing frequency (-2.0 to 2.0).

presence_penalty

float

None

Penalize new tokens based on whether they appear in the text (-2.0 to 2.0).

repetition_penalty

float

None

Penalty for repeating tokens (typically 1.0-2.0).

Advanced Sampling (vLLM/SGLang)

Parameter

Type

Default

Description

min_p

float

None

Minimum probability threshold.

use_beam_search

bool

False

Whether to use beam search.

ignore_eos

bool

False

Whether to ignore the EOS token.

skip_special_tokens

bool

True

Whether to skip special tokens in output.

Guided Generation

Parameter

Type

Default

Description

guided_json

Union[str, Dict]

None

JSON schema for guided generation.

guided_regex

str

None

Regex pattern for guided generation.

guided_choice

List[str]

None

List of allowed choices.

guided_grammar

str

None

Context-free grammar for guided generation.

OpenAI Specific

Parameter

Type

Default

Description

response_format

Dict

None

Format of the response (e.g., {"type": "json_object"}).

tools

List[Dict]

None

List of tools/functions.

tool_choice

Union[str, Dict]

None

Tool choice strategy.

Retrieval & Inference

The InferenceConfig class controls the settings for the retrieval and reasoning pipeline.

from atlas_rag.retriever.inference_config import InferenceConfig

General Retrieval

Parameter

Type

Default

Description

keyword

str

"musique"

Dataset keyword.

topk

int

5

Number of top passages/results to retrieve.

Think on Graph (ToG)

Parameter

Type

Default

Description

topic_prune

bool

True

Whether to prune topics.

temperature_exploration

float

0.0

Temperature for exploration phase.

temperature_reasoning

float

0.0

Temperature for reasoning phase.

num_sents_for_reasoning

int

10

Number of sentences to use for reasoning.

remove_unnecessary_rel

bool

True

Whether to remove unnecessary relationships.

Dmax

int

3

Maximum depth for search.

Wmax

int

3

Maximum width for search.

HippoRAG 1&2

Parameter

Type

Default

Description

is_filter_edges

bool

True

Whether to filter edges.

hipporag_mode

str

"query2edge"

Mode: "query2edge" or "query2node".

weight_adjust

float

1.0

Weight adjustment factor.

topk_edges

int

50

Number of top edges to retrieve before filtering.

topk_nodes

int

10

Number of top nodes to retrieve for graph exploration.

ppr_alpha

float

0.99

Damping factor for Presonalized PageRank (PPR).

ppr_max_iter

int

2000

Maximum iterations for PPR.

ppr_tol

float

1e-7

Tolerance for PPR convergence.

Benchmarking

The BenchMarkConfig class configures the evaluation and benchmarking process.

from atlas_rag.evaluation.benchmark import BenchMarkConfig

Parameters

Parameter

Type

Default

Description

dataset_name

str

"hotpotqa"

Name of the dataset.

question_file

str

"hotpotqa"

Path to the question file.

graph_file

str

"hotpotqa_concept.graphml"

Path to the graph file (unused in some contexts).

include_events

bool

False

Whether to include events in evaluation.

include_concept

bool

False

Whether to include concepts in evaluation.

reader_model_name

str

"meta-llama/Llama-2-7b-chat-hf"

Model used for reading/answering.

encoder_model_name

str

"nvidia/NV-Embed-v2"

Model used for encoding/embedding.

number_of_samples

int

-1

Number of samples to evaluate (-1 for all).

react_max_iterations

int

5

Maximum iterations for ReAct agent.

result_dir

str

"./result"

Directory to store results.

upper_bound_mode

bool

False

Enable upper bound evaluation mode.

topN

int

5

Number of top passages to retrieve for evaluation.