Object
eventuality
- class aser.eventuality.Eventuality(pattern='unknown', dependencies=None, skeleton_dependencies=None, parsed_result=None, use_lemma=True)[source]
Bases:
JsonSerializedObject
ASER Eventuality
- Parameters:
pattern (str) – the corresponding pattern
dependencies (List[Tuple[int, str, int]]) – the corresponding dependencies (e.g., [(1, “nsubj”, 0)])
skeleton_dependencies (List[Tuple[int, str, int]]) – the corresponding dependencies without optional edges (e.g., [(1, “nsubj”, 0)])
parsed_result (Dict[str, object]) – the parsed result of a sentence
- decode(msg, encoding='utf-8', **kw)[source]
Decode the eventuality
- Parameters:
msg (bytes) – the encoded bytes
encoding (str (default = "utf-8")) – the encoding format
kw (Dict[str, object]) – other parameters
- Returns:
the decoded bytes
- Return type:
bytes
- property dependencies
- static extract_indices_from_dependencies(dependencies)[source]
Extract indices from dependencies
- Parameters:
dependencies (List[Tuple[int, str, int]]) – the input dependencies
- Returns:
the involved indices
- Return type:
List[int]
Input: [(8, "cop", 7), (8, "nsubj", 6)] Output: [6, 7, 8]
- static generate_eid(eventuality)[source]
Generate the eid to an eventuality
- Parameters:
eventuality (aser.eventuality.Eventuality) – the given eventuality
- Returns:
the unique eid to the eventuality
- Return type:
str
- property mentions
- property ners
- property phrases
- property phrases_ners
- property phrases_postags
- property position
- Returns:
this property returns average position of eventuality in a sentence. this property only make sense when this eventuality are constructed while extraction, instead of recovered from database.
- property raw_dependencies
- property skeleton_dependencies
- property skeleton_ners
- property skeleton_phrases
- property skeleton_phrases_ners
- property skeleton_phrases_postags
- property skeleton_pos_tags
- property skeleton_words
- static sort_dependencies_position(dependencies, reset_position=True)[source]
Fix absolute positions into relevant positions and sort them
- Parameters:
dependencies (List[Tuple[int, str, int]]) – the input dependencies
reset_position (bool (default = True)) – whether to reset positions
- Returns:
the new dependencies, the position mapping, and the inversed mapping
- Return type:
Tuple[List[Tuple[int, str, int], Union[Dict[int, int], None], Union[Dict[int, int], None]]
Input: [(8, "cop", 7), (8, "nsubj", 6)] Output: [(2, 'nsubj', 0), (2, 'cop', 1)], {6: 0, 7: 1, 8: 2}, {0: 6, 1: 7, 2: 8}
- to_dict(**kw)[source]
Convert an eventuality to a dictionary
- Parameters:
kw (Dict[str, object]) – other parameters
- Returns:
the converted dictionary that contains necessary information
- Return type:
Dict[str, object]
- update(x)[source]
Update the eventuality (‘s frequency)
- Parameters:
x (Union[float, aser.eventuality.Eventuality]) – the given frequency or eventuality
- Returns:
the updated eventuality
- Return type:
- property verbs
relation
- class aser.relation.Relation(hid='', tid='', relations=None)[source]
Bases:
JsonSerializedObject
ASER Relation
- Parameters:
hid (str) – the unique eid to the head eventuality or conceptualied eventuality
tid (str) – the unique eid to the tail eventuality or conceptualied eventuality
relations (Union[None, Dict[str, float], aser.relation.Relation]) – the corresponding relations
- static generate_rid(hid, tid)[source]
- Parameters:
hid (str) – the unique eid to the head eventuality or conceptualied eventuality
tid (str) – the unique eid to the tail eventuality or conceptualied eventuality
- Returns:
the unique rid to the pair
- Return type:
str
- to_triplets()[source]
Convert a relation to triplets
- Returns:
a list of triplets
- Return type:
List[Tuple[str, str]]
- update(x)[source]
Update the relation (‘s frequency)
- Parameters:
x (Union[Dict[str, float], Tuple[str], aser.relation.Relation]) – the given relation
- Returns:
the updated relation
- Return type:
concept
- class aser.concept.ASERConcept(words=None, instances=None)[source]
Bases:
JsonSerializedObject
ASER Conceptualied Eventuality
- Parameters:
words (List[str]) – the word list of a concept
instances (List[Tuple[str, str, float]]) – a list of (eid, pattern, score)
- static generate_cid(concept_str)[source]
Generate the cid to a concept
- Parameters:
concept_str (List[str]) – concept representation (words connected by “ “)
- Returns:
the corresponding unique cid
- Return type:
str
- instantiate(kg_conn=None)[source]
Retrieve the instances that are associated with this concept
- Parameters:
kg_conn (aser.database.kg_connection.ASERKGConnection) – an KG connection to ASER
- Returns:
a list of (eid, pattern, score)
- Return type:
List[Tuple[str, str, float]]
- property pattern
- class aser.concept.ASERConceptInstancePair(cid='', eid='', pattern='unknown', score=0.0)[source]
Bases:
JsonSerializedObject
- Parameters:
cid (str) – the unique cid to the conceptualized eventuality
eid (str) – the unique eid to the eventuality
pattern (str) – the corresponding pattern
score (float) – the conceptualization probability
- class aser.concept.ProbaseConcept(data_concept_path='')[source]
Bases:
object
Copied from https://github.com/ScarletPan/probase-concept
- Parameters:
data_concept_path (str) – Probase .txt file path
- property concept_size
- conceptualize(instance, score_method='likelihood')[source]
Conceptualize the given instance
- Parameters:
instance (str) – the given instance
score_method (str) – the method to compute sscores (“likelihood” or “pmi”)
- Returns:
a list of (concept, score)
- Return type:
List[Tuple[aser.concept.ProbaseConcept, float]]
- get_concept_chain(instance, max_chain_length=5)[source]
Conceptualize the given instance in a chain
- Parameters:
instance (str) – the given instance
max_chain_length (int (default = 5)) – the maximum length of the chain
- Returns:
a chain that contains concepts
- Return type:
List[str]
- get_concept_freq(concept)[source]
Get the frequency of a concept
- Parameters:
concept (str) – the given concept
- Returns:
the corresponding frequency
- Return type:
float
- get_instance_freq(instance)[source]
Get the frequency of an instance
- Parameters:
instance (str) – the given instance
- Returns:
the corresponding frequency
- Return type:
float
- property instance_size